Math 7760 - Homework 3 - Due: September 14, 2022

Practice Problems:

Problem 1. Show that the standard cube and the standard cross polytope are polar duals of each other.

Problem 2. Show that least upper bounds and greatest lower bounds in a poset are unique.
Problem 3. Prove that every finite lattice has a $\hat{0}$ and $\hat{1}$.
Problem 4. For each of the following posets, determine which are lattices. Among those that are, determine which are atomic and/or coatomic.

Problem 5. An algebraic lattice consists of a set S and two binary operations \vee and \wedge satisfying the following two axioms:
(1) $x \vee(y \vee z)=(x \vee y) \vee z$ and $x \wedge(y \wedge z)=(x \wedge y) \wedge z$ for all $x, y, z \in S$ (associativity)
(2) $x \vee(x \wedge y)=x$ and $x \wedge(x \vee y)$ for all $x, y \in S$ (absorption).

Show that if (S, \leq) is a lattice with join and meet operations \vee and \wedge, then (S, \vee, \wedge) is an algebraic lattice. Then, show that if (S, \vee, \wedge) is an algebraic lattice, then there exists a partial order \leq on S that is a lattice with meet and join operations \vee and \wedge.

Problems to write up:

Problem 6. Prove each of the following statements.
(1) The intersection of two polytopes is a polytope.
(2) The sum of two polytopes is a polytope.
(3) Every face of a polytope is exposed.

Problem 7. Define a partial order \prec on \mathbb{N} by $x \prec y$ if and only if for all primes p, if p^{n} divides x, then p^{n} divides y.
(1) Show that (\mathbb{N}, \prec) is a lattice. What are the more familiar names for the meet and join operations?
(2) Does (\mathbb{N}, \prec) have a $\hat{0}$ and/or a $\hat{1}$? If applicable, determine its atoms/coatoms.
(3) Is (\mathbb{N}, \prec) atomic and/or coatomic?
(4) Show that (\mathbb{N}, \prec) is isomorphic to the poset (S, \subseteq) where S is the set of all finite multisets with elements in \mathbb{N}, partially ordered by inclusion.
Problem 8. Show that every polytope is affinely isomorphic to a bounded intersection of an orthant with an affine space.

