Math 7760 – Homework 3 – Due: September 14, 2022

Practice Problems:

Problem 1. Show that the standard cube and the standard cross polytope are polar duals of each other.

Problem 2. Show that least upper bounds and greatest lower bounds in a poset are unique.

Problem 3. Prove that every finite lattice has a $\hat{0}$ and $\hat{1}$.

Problem 4. For each of the following posets, determine which are lattices. Among those that are, determine which are atomic and/or coatomic.

Problem 5. An *algebraic lattice* consists of a set S and two binary operations \lor and \land satisfying the following two axioms:

(1) $x \lor (y \lor z) = (x \lor y) \lor z$ and $x \land (y \land z) = (x \land y) \land z$ for all $x, y, z \in S$ (associativity) (2) $x \lor (x \land y) = x$ and $x \land (x \lor y)$ for all $x, y \in S$ (absorption).

Show that if (S, \leq) is a lattice with join and meet operations \lor and \land , then (S, \lor, \land) is an algebraic lattice. Then, show that if (S, \lor, \land) is an algebraic lattice, then there exists a partial order \leq on S that is a lattice with meet and join operations \lor and \land .

Problems to write up:

Problem 6. Prove each of the following statements.

- (1) The intersection of two polytopes is a polytope.
- (2) The sum of two polytopes is a polytope.
- (3) Every face of a polytope is exposed.

Problem 7. Define a partial order \prec on \mathbb{N} by $x \prec y$ if and only if for all primes p, if p^n divides x, then p^n divides y.

- (1) Show that (\mathbb{N}, \prec) is a lattice. What are the more familiar names for the meet and join operations?
- (2) Does (\mathbb{N}, \prec) have a $\hat{0}$ and/or a $\hat{1}$? If applicable, determine its atoms/coatoms.
- (3) Is (\mathbb{N}, \prec) atomic and/or coatomic?
- (4) Show that (\mathbb{N}, \prec) is isomorphic to the poset (S, \subseteq) where S is the set of all finite multisets with elements in \mathbb{N} , partially ordered by inclusion.

Problem 8. Show that every polytope is affinely isomorphic to a bounded intersection of an orthant with an affine space.